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Abstract 

In image quality assessment, preference for various image 
processing algorithms or treatments is often determined 
using paired comparisons. In this experimental design, pairs 
of images processed by different algorithms or “treatments” 
are presented to a judge. The preferred treatment is selected 
and a tally is kept of the number of times each treatment is 
preferred to another. It is possible to estimate an interval 
scale for treatments in a hypothetical psychological space 
using this method.  

There are two dominate paired comparison statistical 
models: Thurstone-Mosteller Case V (TM) (corresponding 
to Thurstone’s Law of Comparative Judgment, Case V) and 
Bradley-Terry (BT). Although TM is used almost 
exclusively in the imaging literature, the BT formulation is 
more mathematically developed. Owing to its parsimony, it 
provides tractable maximum-likelihood estimators for 
scales, simultaneous confidence intervals and hypothesis 
tests for model fit, uniformity, and differences among 
populations of judges. In practice, TM and BT yield nearly 
identical scale estimates for complete data. In some 
experimental designs, many treatments are compared. 
Owing to the large number of possible treatment pairs, not 
every comparison is made, leading to an incomplete matrix 
of preference counts. Unlike TM, BT model applies directly 
to incomplete data under mild restrictions 

We compare and critique TM and BT models. 
Statistical analyses, many not available under TM, are 
demonstrated. An argument is made that BT offers 
overwhelming advantages to the imaging community and 
should be used instead of TM. 

Introduction 

This paper compares two well-known paired comparison 
models: the Thurstone-Mosteller (TM) model (by which we 
mean Thurstone’s Law of Comparative Judgment, Case V) 
and the Bradley-Terry (BT) model. (Mosteller’s name is 
included in TM due to his work on the statistical analysis of 
Thurstone’s model). We argue here that BT model should 
be used in place of TM because presently the former is 

more developed mathematically than the latter. In 
particular, easy formulas exist for maximum likelihood 
estimates (mle) of scale parameters. The asymptotic theory 
of mle’s yields estimators for confidence regions and test 
statistics based on likelihood ratios for hypothesis testing. 
TM is privileged within the imaging community ostensibly 
owing to its origins in psychophysics. Yet it is universally 
acknowledged that TM and BT yield similar scale estimates. 
The theory (and software) for generalized linear models can 
produce mle’s yet BT, with its roots in experimental design 
and consumer choice modeling, offers numerically easier 
statistical procedures. We present no new research although 
we do show an alternative analysis to previously published 
data. Our intent is to provide the imaging community with a 
general context for paired comparisons, compare and 
contrast the two models, and demonstrate the advantages of 
BT. 

The Linear Model 

TM and BT models are both linear models of paired 
comparisons. In such models, probabilities of preference 
can be mapped to scales. Formally (following David, 
19884), let 

iV  and 
jV  represent “merits” of objects 

iA  and 

jA , respectively. In a psychophysics setting, the 
iV  might 

represent sensation magnitudes on a scale. We represent the 
observed merit of object

iA  by random variable
iX owing to 

observation-to-observation variation. A linear model takes 
the form 

( ) ( )
i j i jijP X X H V Vπ> ≡ = −

   (1)  

where H is a monotonic, increasing function such that 
( ) 0H −∞ = , ( ) 1H +∞ = , and ( ) 1 ( )H x H x− = − . There 

are obviously an infinite number of choices for function H, 
the two of concern here are the Thurstone-Mosteller model 
where H is the normal cumulative distribution function with 
zero mean and the Bradley-Terry model where 

[ ]1
( ) 1 tanh( / 2)

2
H x x= +      (2) 
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The task is to produce estimates iv  of iV , 1, ,i m= � . 
If the function H has additional parameters, we need to 
estimate those as well. Assume without loss of generality 

1
0

m

ii
V

=
=∑  and define ij i jV Vδ = − . Estimation proceeds 

by tallying ijα , the number of times object iA is preferred 
to object jA after ijn comparisons. A sample estimate of 

ijπ is /ij ij ijp nα= . We define ( )ij ijH d p=  and compute 
merit or scale estimates iv  by ij i jd v v= − , i j≠ , 
, 1, ,i j m= � . It can be shown that a least squares estimate 

of iV is  

1 m

i ij
i j

v d
m ≠

= ∑       (3)  

This estimate holds regardless of H and is the usual method 
for Thurstone’s Case V model.  

Assume that each pair is observed a fixed (but possibly 
unequal) number of times. That is, the sums ijn  are fixed 
and the tallies ijα are binomial random variables: 

( ) (1 ) , 0,1, ,
ij

ij ij ij ij ij

ij

ij ij ijnn
P n

α αα π π α
α

−= − =
 
 
 

�      (4) 

Owing to independence, the likelihood function is 

[ ]

( ) ( )

( ) 1 ( ) ij ijij

ij

i j

nij

i j i j

i j ij

L P

n
H V V H V V

αα

α

α

<

−

<

=

= − − −
 
 
 

∏

∏

.

   (5) 

where [ ]ijα=. , the matrix of preference counts. 

The Thurstone-Mosteller Model 

The most general Thurstonian model on m stimuli posits a 
multivariate distribution on 1( , , )mX X� . In paired 
comparisons, one observes incomplete rankings where 
stimuli are presented two at a time. Pair-wise choice 
probabilities take the form 

2 2 1 / 2

2 2

2

( ) /( 2 )

1
( )

2 ( 2 )

exp( / 2)

i j i j ij

i j

i j ij

P X X

y dy
µ µ σ σ σ

π σ σ σ
∞

− − + −

> = ×
+ −

−∫
   (6) 

For a scaling interpretation, means are considered 
ordered along a continuum in a psychological space. As 
discussed elsewhere (e.g., Engledrum5 or Torgerson,9] the 
full-blown Thurstone model has too many parameters 
(means, variances, and covariances), so simplifying 
assumptions are applied. Perhaps the most-used model in 
paired comparisons in Thurstone’s Case V, where 'siX  are 
assumed independent and identically distributed save for 
location parameters µi, i = 1,… ,m (µi = vi, i = 1,… ,m in the 
linear model discussion): 

2

( )

1
( ) exp( / 2)

2
i j

i j
P X X y dy

µ µπ

∞

− −

> = −∫   (7) 

In this case, one usually computes least squares 
estimates ˆ

iµ  using Eq. 3. Inferences regarding 

1
ˆ ˆ ˆ( , , )mµ µ= �µ are difficult to obtain owing to its 

unknown (asymptotic) distribution.  
A likelihood function based on comparisons matrix�  

is 

[ ] [ ]

( ; ) ( )

( ) 1 ( )ij ij ij

ij

i j

nij

i j i j

i j ij

L P

n α α

α

µ µ µ µ
α

<

−

<

=

= Φ − −Φ −
 
 
 

∏

∏

. �

  (8) 

The log of this likelihood function can be optimized 
numerically.  

The Bradley-Terry Model 

One can rewrite Eq. 2 as 

log( /(1 ))ij ij i jV Vπ π− = − ,     (9) 

That is, the scale or merit differences obey a logistic 
model (instead of a probit model in the Thurstonian case). 
This model can be simplified to m-1 parameters by 

, ,i
ij

i j

i j
ππ

π π
= ≠

+
     (10) 

where 

0>iπ   and 
i=1

1
m

iπ =∑  

so that Eq. 9 takes the form log logi j i jV Vπ π− = − . This 
is the Bradley-Terry model of paired comparisons. One can 
write the model in a form similar to Eq. 7: 

∫
∞

−−
=>

)log(log

2 ,)2/(hsec
4

1
)(

ji

dyyXXP ji
ππ

   (11) 

and logi iV π=  provide scale parameters. Owing to Eq. 10, 
the likelihood function, Eq. 5, has a simple form in terms of 

1( , , )mπ π=� � and can be solved iteratively: 

1( )
i

i

ij i j
i j

a
p

n p p −

≠

=
+∑

     (12) 

where     i iji j
a α

<
= ∑ ,  

the total number of comparisons preferring iA . A sufficient 
condition for a maximum likelihood is that each partition of 
the objects into two nonempty subsets such that some object 
in the second set has been preferred to at least once to some 
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object in the first set.6 David (1988) points out that if this 
condition is violated, it means one of two things: 1) there 
exists subsets S and T of objects such that no object in S is 
compared to object in T; or, 2) there exists subsets S and T 
such that every comparison of objects between them favors 
objects in S.4 These conditions can often be detected by 
inspecting the comparisons matrix . . 

BT (essentially Eq. 10) can be developed into a general 
distance model on ranked data. Mallows7 invoked the so-
called Babington-Smith transitivity model (which allows 
only paired comparisons that produce a complete ranking 
on m objects) on BT to produce the Mallows θ model. This 
is discussed in Marden.8 

The remainder of this section follows Bradley.2 In 
addition to MLE for scale parameters, BT also provides a 
means to test whether the data are statistically different from 
uniform. To test the hypothesis 

0 1:   1/mH mπ π= = =�     (13) 

against the alternative 

for some:     , ,  ,  , 1, ,a i jH i j i j i j mπ π≠ ≠ = �  (14) 

use the test statistic 

1

1

2 log 2 2

log( ) log

U

ij i j i i
i j i

T N B

B n p p a p
<

= −

= + −∑ ∑   (15) 

which is distributed approximately chi-squared with t-1 
degrees of freedom (df) for large ijn under 0H . 

Sometimes we wish to test whether there are 
differences among groups of responses. In the example 
below, we test whether there is a difference between experts 
and nonexperts. Let each of g groups have its own set of m 
parameters indexed the following way: 

,  1, , ,   1, ,u

i i m u gπ = =� � . To test  

0 : ,  1, , ,   1, ,u

i iH i m u gπ π= = … = �    (16) 

versus the alternative 

for some and:      u

a i iH i uπ π≠ ,    (17) 

use the the test statistic  

1 1
1

2
g

G u
u

T B B
=

= − 
  

∑      (18) 

where 1B  is computed as above using data pooled over 
groups and 1uB is computed for each group. Under 0H for 
large ijun this test statistic has an approximate chi-squared 
distribution with (g-1)(t-1) degrees of freedom. 

Bradley also provides a confidence region for the 
vector parameter 

).,,( 1 mπππ �=  

Approximate (1 - α) 100% confidence intervals for the 
location parameters of interest are  

( )/ 2 / 2
ˆ ˆlog / / ,log / /i ii i i ii ip z N p p z N pα ασ σ− +    (19) 

i = 1,…,m, where ij
i j

N n
<

= ∑  

is the total number of comparisons, the ip  are the mle’s, 
ˆ

iiσ is the ith diagonal element of the (m + 1) by (m + 1) 
matrix 

1ˆ
ˆ

0

−
Λ

Σ =
 
 
 '

1

1
      (20) 

where ˆˆ [ ]ijλΛ = ,  

2

2

1ˆ /[ ( ) ], 1, ,

ˆ /[ ( ) ], , , 1, , .

ii j ij i j
j ii

ij ij i j

p n N p p i m
p

n N p p i j i j m

λ

λ
≠

= + =

=− + ≠ =

∑ �

�

   (21) 

With the aid of a matrix inversion routine, these 
statistics are easily coded into C.  

Analysis Example 

We analyze a data set using BT model to demonstrate its 
advantages over TM. The experiment is discussed in detail 
in [1]. Four gamut-mapping algorithms were evaluated in 
two ways. In the first part, subjects chose the better 
rendition from a pair of prints. In the second, subjects chose 
the better reproduction of reference prints. Tables 1 and 2 
contain the comparison data. 

Table 1. Comparisons matrix for “preference” 
experiment. 

 1 2 3 4 
1 - 26 28 22 
2 64 - 46 34 
3 62 44 - 64 
4 68 56 64 - 

Table 2. Comparisons matrix for “reproduction” 
experiment. 

 1 2 3 4 
1 - 46 29 48 
2 44 - 34 43 
3 61 56 - 50 
4 42 47 40 - 

 
Each of eighteen judges viewed five images and each 

print was an image/algorithm combination. Judges were 
partitioned into two classes based on experience: experts 
(11) and non-experts (7). From the data, we wish to 
establish for each task, whether preferences exist, and if so, 
a estimate a preference scale. Further, we wish to access 
whether differences exist between experts and non-experts.  
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Preference Data 
Using procedures summarized above we perform a 

hypothesis test to determine whether the data are 
statistically significant from uniform: TU = 74.01 with 3 df. 
The 95% chi-square cutoff is 7.82, so we conclude the data 
are nonuniform. The estimated scale: 

 ( log( ),  1, , 4ip i = � ) is (-2.22, -1.39, -1.53, -0.86). 

The data can be grouped into comparisons made by 
expert and nonexperts. For expert data, the estimated scale 
is: (-2.25, -1.43, -1.58, -0.80) and the test statistics for 
uniformity it TU = 50.1 with 3 df, which is significant at 
95%. For nonexpert data, the estimated scale is: (-2.17,-
1.34, -1.46, -0.94) and TU = 24.7 with 3 df, also significant 
at 95%. The scales for experts and nonexperts appear to be 
similar. We can do a hypothesis test to compare these two 
populations for preference data. The test statistic for 
uniformity of these two groups is TG = 0.75 with 3 df, which 
is not significant at 95% and therefore we conclude there is 
no statistical difference in the preferences of these two 
populations. Estimated scales and confidence intervals are 
shown in Figures 1 through 3. 

 

Bradley-Terry scale for "preference" data with 95% CI
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Figure 1. Scale for “preference” data. 

Bradley-Terry scale for expert "preference" data with 95% CI
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Figure 2. Scale for expert “preference” data.  

In summary, algorithm 4 is preferred by experts and 
preferred weakly by nonexperts for the experiment in which 
subjects were asked which rendition they preferred. 

Reproduction Data 
The estimated scale for the entire reproduction data set 

is (-1.54, -1.57, -1.05, -1.48) . The test statistic TU = 15.7 
with 3 df, N = 540, which significant at 95%. We therefore 
conclude that the data is statistically different from a pure 
random sample from a uniform distribution and that the data 
show a preference structure. For the expert responses 
among the reproduction data, the estimated scale is: (-1.52, -
1.64, -0.92, -1.67). The test for uniformity: TU = 19.3 with 3 
df, significant at 95%, from which we conclude that the data 
for experts show a preference structure.  

For nonexperts, the estimated scale is: (-1.62, -1.5, -
1.27, -1.21) and TU = 3.76 with 3 df, which is not significant 
at 95%. We conclude that the data are not statistically 
different from uniform (there is a 28.8% chance we would 
have gotten this test statistic value were the data from a 
uniform distribution). 

 
 
 

Bradley-Terry scale for nonexpert "preference" data with 95% CI
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Figure 3. Scale for nonexpert “preference” data 

Bradley-Terry scale for "reproduction" data with 95% CI
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Figure 4. Scales for”reproduction” data. 
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Bradley-Terry scale for expert "reproduction" data with 95% CI
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Figure 5. Scale for expert “reproduction” data. 

 

Bradley-Terry scale for nonexpert "reproduction" data with 95% CI
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Figure 6.Scale for nonexpert “reproduction” data. 

 
To compare experts and nonexperts, the test for 

uniformity of these two groups: TG = 7.4 with 3 df, which is 
not signficant at 95% (but it is significant at 94%; that is, 
there is a 6% probability that this test statistic value would 
be obtained under uniformity). Thus algorithm 3 is 
preferred by experts for the reproduction experiment in 
which viewers were asked to judge which algorithm 
produced a closer match to an original. Nonexpert 
judgments are not statstically different from uniformly 
random preferences.  

Summary 

Owing to its simplicity, BT is much more developed 
analytically than TM (Case V). Many statistical procedures 
are available and easily implemented. We have 
demonstrated a few: mle’s for scale parameters with 
confidence intervals (and regions), hypothesis tests for 
uniformity, and hypothesis tests for preference agreements 
among groups. In the main, both models can be cast into the 
framework of generalized linear models and numeric 

techniques used to perform similar analyses.3 Should one 
wish to model interactions between pairs of stimuli and 
dispersion variations, alternatives to TM are available.10 In 
the modern setting, we are no longer restricted to least-
squares solutions to TM models. We can explore many 
general models using modern statistical theory and 
software. But for the bulk of our work (Thurstone’s Case 
V), BT provides powerful analyses easily implemented in a 
few tens of lines of C-code.  
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